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Abstract 

Numerical values a r e  presented for the admittance of an infinite 

cylindrical antenna excited at  a circumferential gap of finite thickness 

and immersed in a lossy, isotropic, compressible plasma. The formu- 

lation uses  the linearized hydrodynamic equations for the electrons (ion 

motion is neglected) together with Maxwell's equations. 

of finite, variable thickness (the vacuum sheath) is used to approximate the 

positive ion sheath which forms about a body at  floating potential in a warm 

plasma. 

tion of the Fourier integral for the antenna current, and is presented for 

plasma parameter  values typical of the E-region of the ionosphere. 

A free-space layer 

The antenna admittance i s  obtained by direct  numerical integra- 

The results obtained show for the parameter  range investigated that 

above the plasma frequency, the electron temperature, electron collisions 

and the sheath have relatively little influence on the admittance. 

plasma frequency, the admittance is very dependent upon these parameters.  

In particular, a rather  marked maximum in both the conductance and sus-  

ceptance is found at  about half the plasma frequency, which is not present 

when the sheath thickness and electron temperature a r e  both zero. 

particular interest  is the large increase which may be exhibited by the an- 

tenna conductance below the plasma frequency because of the finite electron 

temperature compared with the zero temperature conductance, for a given 

value of collision frequency. 

Below the 

Of 

vi i 



I Introduction 

There is currently a great deal of interest  in the impedance 

character is t ics  of plasma-immersed antennas in connection with the possible 

exploitation of rocket and satell i te borne antennas as probes to determine 

the ambient electrical  properties of the ionosphere. The perturbing effect 

of the ionospheric plasma on the reactance of an electrically short  antenna 

was reported on a s  ear ly  as 1952 by Jackson. 

developed (Jackson and Kane, 1959, 1960; Kane e t  a1 1962) that used a 

Q-meter  type of observation for determining the electron density. 

(1963) concluded that the resis t ive impedance component of the electrically 

short  antenna in the ionosphere w a s  a lso modified, due to radiating electron 

A method was subsequently 

Whale 

pressure  waves as well as the usual electromagnetic (EM) wave, although 

his resu l t s  must be viewed with some skeptism since he ignored electron 

collisions, which although infrequent in the ionosphere, may produce resu l t s  

which a re  by no means negligible, as wi l l  be shown below. 

Further  experimental probing of the ionosphere using radio 

frequency techniques has subsequently been reported on by Heikkila (1965a, 

1965b), Heikkila e t  a1 (1966), Bramley (1965), MacKenzie and Sayers (1966 

Stone, e t  a1 (1966a, 196613) to mention only a few. The details  of these 
*: 

various experiments differ. But they generally have in common an attempt 

to measure electron density from the change in reactance from f ree  space 

of an r f  driven electrode (antenna) or electrode pair  immersed in the plasma. 

A new and novel suggestion f o r  measuring plasma electron 

densit ies was made by Takayama e t  a1 (1960). This scheme, called the 

plasma resonance probe, involves observing the dc current  to a Langmuir 
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probe while a low level rf voltage is simultaneously applied to the probe 

and swept in frequency, the reported resul t  being that a resonance in the dc 

probe current was observed as the r f  frequency passed through the electron 

plasma frequency of the plasma outside the probe sheath. 

vestigations carr ied out elsewhere conflicted with Takayama et al's resul ts  

in that the resonance frequency appeared to consistently lie below the 

electron plasma frequency, being influenced by such fac tors  as the sheath 

s ize ,  probe s ize  and probe potential. 

resonance does indeed l ie below the electron plasma frequency; a discussion 

of both the theoretical and experimental aspects of the resonance probe is 

given by Harp and Crawford (1964) .  

Further in- 

It has since been accepted that the 

A related a rea  of investigation was begun by Field (1956) into 

the modifying effects of a finite electron temperature upon EM wave propa- 

gation in  a plasma. 

pressure  wave, o r  electrokinetic (EK)  wave in regions of plasma inhomo- 

geneity, sharp plasma boundaries, o r  as a resul t  of static magnetic fields. 

Cohen (1962)  l a t e r  showed that the resistance of an electrically short  cu r -  

rent  filament in a compressible (warm) plasma would be dominated by the 

effect  of the finite temperature, with most of the energy being radiated in 

the E K  mode. 

on the impedance of plasma immersed antennas have been carr ied out, 

including Balmain (1965), Hessel, e t  a1 (1962), Ament et a1 (1964), Seshadri 

(1965a, 1965b), Fejer  (1964) and Wait (1964a, 1964b, 1965, 1966a).  The 

conclusion reached a s  a resul t  of these studies is generally that the E K  wave 

may also be excited by a s t ructure  of finite dimension in the plasma (as  

He showed that the EM wave could couple to an electron 

Many further investigations into the influence of the E K  wave 
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o p p ~ s e d  tz, the f i k i l i e f i t ~ r y  curi-eiit source of Coherij, but that the E K  

effect may be much reduced by a sheath, and as a consequence of the finite 

s ize  of the antenna. 

While the experimental evidence had not been a t  all conclusive 

regarding the relatively large effect on antenna impedance due to the EK 

wave predicted by such studies mentioned above, evidence of a different 

nature had been obtained that indicated the possible excitation of the E K  wave 

by a plasma-immersed antenna. 

rocket tes t s  of a topside sounder by Knecht e t  a1 (19611, the resonance 

phenomena appearing as echoes extending from the turnoff time of the 

sounder when the sounder frequency was equal to the electron plasma 

frequency, or  the square root of the electron plasma frequency squared plus 

the electron cyclotron frequency squared (the upper hybrid frequency). 

Similar effects were observed on a second rocket flight (Knecht and Russel, 

1962) and with the Alouette topside sounder (Lockwood, 19631, with additional 

resonances appearing a t  multiples of the electron gyrofrequency. 

Resonance effects were observed during 

These resonances were explained by Calvert and Goe (1963) 

a s  being due to electrostatic oscillations excited in the vicinity of the antenna 

by the sounding pulse, with the energy partially fed back to the antenna when 

the pulse was turned off. More rigorous analyses of this phenomena were 

car r ied  out by Fe jer  and Calvert (1964),  Deering and Fe jer  (i965) and 

Dougherty and Monoghan (1966), the latter two incorporating the kinetic 

equations for the warm plasma rather  than the fluid approach usually taken. 

These studies show that the observed resonances can be accounted for  

theoretically, and also predict some resonances not yet observed. The 
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resonances a r e  studied by finding the singularities of the Fourier integrals 

fo r  the space-time variations of the field of an infinitesimal current source 

dipole in the plasma. 

for the actual fields near  the s3urce, as a function of space and time. 

Deering and Fejer  a lso obtained some expressions 

This property of the plasma to resonate at characterist ic f re -  

quencies after removing the excitation, has been called the relaxation 

resonance by Heikkela (1965a), to differentiate it from the resonance associ-  

ated with the resonance probe. It appears that the relaxation resonance holds 

some promise for  electron density measurements  in the ionosphere, about 

which we will say more la ter .  

We see that with the greater  opportunities to observe the be- 

havior of plasma-immersed antennas that have become available with the 

advent of rocket and satellite experimentation in the ionosphere, the picture 

of the antenna-plasma coupling has become more  and more complex. From 

the ear l ier  models where the plasma was characterized a s  a simple d i -  

electric, the plasma is now recognized a s  a much more complicated medium, 

where it maybe unsafe to neglect any one aspect of the plasma properties 

without risk of omitting essential features of the physics involved. 

that in particular, the finite plasma temperature may produce gross  variations 

f rom the dielectric plasma model, leading to sheath effects, radiation in an 

acoustical mode, and possibly enhancement of collisional effects because of 

the much shorter  E K  wavelength compared with the EM wavelength. 

We see  

It is apparent that the analytical problem of dealing with the 

antenna immersed in a compressible, lossy, magnetoplasma is a very difficult 

one. It is only in the past few years  that the problem of the linear antenna 
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more  than a wavelength or so in length in f ree  space can be said to have 

been numerically solved. 

plasma medium, leads to a problem of much grea te r  complexity. 

the electrically short  l inear antenna in f r e e  -space, where both the dependence 

on length and the propagation constant of the antenna current  may be 

reasonably approximated, this situation may not hold in the compressible 

plasma medium, since the E K  wave may a l te r  the antenna current.  

addition, an electrically short  antenna for EM waves may be very long for the 

E K  wave. Also in contrast  to the free-space situation, where a current  

filament may be used a s  a mathematical model of the r ea l  (thin) antenna, it 

appears  from the work of Seshadri (1965a, 196513) and Wait (1966a), that the 

finite t ransverse dimensions of the antenna and the presence of a sheath 

decrease the effect of the E K  wave on the antenna impedance. Thus any 

resul ts  obtained from analyses using infinitesimal sources  or  assumed 

current  distributions and neglecting the sheath must be viewed with some 

suspicion a s  giving undue importance to the effect of plasma compressibility. 

And yet the same antenna when put into the 

Unlike 

In 

There a r e  two broadly different approaches one might consider 

using to more  realistically analyze the impedance of the antenna in a warm 

magneto-plasma. 

Hallen (1930, 1938, 1939), King et a1 (1961) and others with an emphasis on 

the antenna current,  which involves developing an integral equation (s) for 

the antenna current .  The problem involves solving the integral equation, by 

no means an easy task, since fo r  the compressible plasma,  one obtains two 

coupled integral equations which lead to the current  (Cohen, 1962). T h e  

other method involves formulating the problem as a boundary value problem, 

One method would be an extension of that developed by 
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with the emphasis on the antenna fields, where an integral equation may 

a r i se  involving the electric field in the antenna "aperture" (e. g . ,  the 

cylindrical surface extending to infinity f rom the ends of a finite cylindrical 

antenna) or the electric field across  the slot exciting the antenna. 

slot is thin compared with the wavelengths involved, then a good approxi- 

mation in the la ter  case is to assume a constant electric field across  the 

slot, in which case the formal solution for the antenna current  is obtained 

as a Fourier integral (or ser ies ) .  

essentially a circuit theory approach and the la ter  a f ie ld  theory approach 

(Schelkenoff, 1952).  In either case, solving for the antenna impedance 

requires  a "near field'' solution, a generally much more  difficult procedure 

than finding only the antenna radiation resistance, where only the fa r  fields 

a r e  required. 

If the 

The former approach to antenna theory is 

The method which is most appropriate to a given problem depends 

partly on the goemetry involved; in a case such as the infinite cylindrical 

antenna, there i s  no inherent difference between the two approaches, the 

formal results being identical. 

i t s  surface may be represented by a single coordinate in a particular co- 

ordinate system, then the boundary value approach is the natural one to  use. 

On the other hand, the finite l inear cylindrical antenna has been historically 

treated by the antenna-current integral equation approach, although Einarson 

(1966) has formulated this problem using the boundary value approach also. 

If the geometry of the antenna is such that 

Unfortunately however, if one des i res  to t rea t  an antenna of finite 

size in a compressible plasma, and even then neglecting the static magnetic 

field, only in the case of spherical goemetry is the problem really tractable. 

As  pointed out above, a pair  of coupled integral equations result  from the 

finite cylindrical antenna. The prolate spheroidal goemetry, an attractive 
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ene fer A +r r-rPQPntinG --------- b 9 - f in i t e ,  ------- near ly  cyl indr ica l  an tenna  with a single P O -  

ordinate surface suffers  f rom great computational difficulty if the plasma 

is lossy, (Wait, 

analyzed by Schelkenoff (1952)  the disadvantage of requiring the inversion 

of an infinite matrix fo r  the solution. If the static magnetic field is added 

to  the problem, then even the spherical geometry becomes impractical. 

However, the infinite cylindrical antenna can in principle be analyzed in 

this  case,  if the magnetic field is parallel to the cylinder axis. We thus 

choose to approach the investigation of the plasma-immersed antenna by 

treating the infinite cylindrical antenna, since it appears to offer the best 

possibility a t  present for making the fewest restrictive assumptions and 

including a maximum of the physical aspects of interest ,  while s t i l l  being 

a practically solvable problem. 

1966b) and in addition shares  with the biconical antenna 

Our pr imary interest  in this problem is in connection with the 

use of a l inear dipole antenna, operated in a swept frequency mode in the 

ionosphere, for the purpose of exciting and detecting the relaxation resonance 

at  the electron plasma frequency, to thus determine the ambient ionospheric 

electron density. The ultimate goal of our investigation would be to  find the 

antenna current as a function of time so that the explicit effect of the re -  

laxation resonance could be seen. 

frequency response over a wide frequency range with a subsequent Fourier  

inversion f rom the frequency to the time domain. 

computational problem, since even finding the impedance of the antenna at 

a single frequency is, as wi l l  be seen below, very involved. Consequently, 

we content ourselves in the present report to investigating only the frequency, 

and not the time, behavior, of the infinite antenna. 

This would require finding the antenna 

This is a very difficult 
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An analysis of the infinite cylindrical antenna is admittedly 

not as satisfying nor informative as a study of the finite antenna would be, 

but i t  appears to be definitely worthwhile pursuing, for the reasons men- 

tioned above , and considering the intended application of the investigation. 

While the analysis cannot give, fo r  example, absolute values for the im-  

pedance of the finite antenna, it can show the relative changes brought 

about by the various influencing factors such as plasma temperature,  

collision frequency, sheath parameters,  etc. which may be expected to 

exhibit some of the same characterist ics for  the infinite antenna as for 

the finite antenna. Some care  must be exercised here, since the free-space 

impedances of the infinite cylindrical antenna and the electrically short 

antenna, which must be taken into account if a reasonable comparison of 

the plasma perturbation on the impedance is to be made, may be consider- 

ably different; this wi l l  be discussed further below in presenting the results.  

While the antenna is infinite, the source, which wi l l  be taken to 

be a circumferential slot of finite thickness with a specified voltage, is the 

same as used for the finite antenna. Thus the main difference between the 

two is that there  a r e  reflected waves on the finite antenna, which lead to  r e -  

sonance conditions with changing length that a r e  not present on the infinite 

antenna, as  well a s  to the impedance variation mentioned above. 

The formulation of the problem is given in the next section, and 

is restricted for this report to the case of the compressible, lossy plasma, 

but without a static magnetic field, Section I11 contains a discussion of the 

numerical  analysis used to obtain the numerical  resul ts  which a r e  given in 

section IV. The RMKS system of units wi l l  be used unless otherwise specified. 
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I1 Formulation 

Our description of the field behavior in the plasma proceeds from 

the t imedependent hydrodynamic equations for the electrons (ion motion 

is neglected) together with Maxwell's equations, a s  

VHr, t )  q 
mN(r, - t )  m 0--' - - -- P V ( r  tlxH(r, t) --- 

( 6 )  

where E - and H - a r e  the total electric and magnetic fields, V, N, P, and T 

a r e  the macroscopic electron velocity, number density, pressure and 

temperature,-q and m a r e  the electron charge and mass,  tl is the electron 

collision frequency, 7 the ratio of specific heats for the electron gas, - r 

and t a r e  the space and time coordinates, a r e  the permittivity 

and permeability of f ree  space and k i s  Boltzmann's constant. 

is the momentum transport equation, (2 )  is the mass  transport  equation, 

(3) is the energy transport  equation fo r  adiabatic heat flow, (4)  is the ideal 

gas equation of state and (5) and (6)  are  Maxwell's equations. 

fo and 1-1 

Equation (1) 

The usual method of dealing with Eqs. (1) - (6 )  is to linearize them, 

introducing time varying o r  dynamic perturbation quantities small  in 

comparison with the non-time varying o r  static quantities. Since the resulting 
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boundary value problem wi l l  be dependent on the model used to account 

for the ion sheath, the two sheath models to be used in the analysis wi l l  

be treated separately. In the vacuum sheath model, the actual sheath is 

replaced by a frespace layer, while in the inhomogeneous sheath model, 

the actual sheath inhomogeneity is included in the analysis. In either case, 

the sheath is  assumed of finite thickness and of radius p =s, forming a 

concentric layer between the antenna surface of radius p =c, whose axis 

is coincident with the z-axis of the cylindrical ( p  , (r, , z )  coordinate system, 

and the external uniform plasma. 

by a circumferential slot of finite width 6, centered at  z=O, across  which 

The antenna is assumed to be excited 

voltage Vo i s  applied which i s  independent of azimuthal coordinateq . 

A s  a result, there is no field variation in the q direction and only an axial 

antenna current  is excited. 

to the case of no static magnetic field. 

The present analysis is also to be restricted 

I1 1. The Vacuum Sheath. 

A vacuum sheath has  been used by Seshadri (196513) and Wait (1966a) 

In both cases,  the in connection with an antenna in a compressible plasma. 

analyses a r e  restricted to a lossless  plasma with the excitation frequency 

exceeding the electron plasma frequency. 

the spherical dipole antenna, comparing the resul ts  for antenna admittance 

for both the vacuum and inhomogeneous sheath models, again for  a lossless  

plasma with the excitation frequency above the electron plasma frequency. 

His results indicate that the vacuum sheath tends to  exaggerate the influence 

of the EK wave compared with the more  realist ic inhomogeneous sheath. 

Larson (1966) recently studied 

10 



These findings a r e  substantially in agreement with those of Miller and 

Olte (1966a, 1966b), for the scattering of E M  and E K  waves from a plasma- 

v I 

immersed  cylinder, where it w a s  found that for EK wave incidence, the 

vacuum sheath model led to surface currents and scattering cross-sections 

approximately the same as those obtained from an inhomogeneous sheath 

about twice as thick. It appears then that the vacuum sheath model may be 

a reasonable f i rs t  approximation of the actual inhomogeneous sheath, i f  i t s  

limitations a r e  kept in mind. 

Equations (1) - (6 )  a r e  linearized by introducing the following 

variables, 

since in the uniform plasma there is no static component of electric field o r  

electron velocity. With the introduction of (7)  into (1) - (6),  we obtain 

en(r, t)=N V-v(r, -- t)=O ;it - 
(1 1) 

We wi l l  assign a value of 3 to 

compression (Cohen 1962)’ so  that Eq. (10) becoqes  

corresponding to  adiabatic, one dimensional 

where we have used 3kT=mv‘ with v the r m s  electron velocity. r r 

If we Fourier  analyze the variables appearing in (8) - (11) by using 

11 



the  Fourier transform pair  
03 

- iwt -/ e e ( r ,  t)dt 
Iy 

_ -  e( r ,  w) = -- 

then we get 

i&(r, - U ) + N  v z ( K ,  w ) = o  (15) 

W e  may now follow the usual technique for the spatially uniform plasma, 

by breaking the fields up into the E M  and E K  modes, with components 

denoted respectively by E and P, a s  
rv d 

Wgp= TgE=O 

with the we l l  known result  that 
(V2+KE)L=0 2 ”  

(V2+Kp)n=0 2 - .  

where 

n 

uL fE=  1 -- 
(1 -iV) 

2 = I - U  -iV P 

u = w  / w = f  If  

v= ’ d lw= >/2lTf 
P P  

12 



with f the electron plasma frequency, and v the f ree  space propagation 

velocity of light. 
P Q 

Since there is no azimuthal variation of the source o r  

plasma and antenna structure,  only the t ransverse magnetic (TM) ( H  =0)  

EM mode wi l l  be excited, along with the E K  mode. The TM and EK field 
Z 

/v 

T components are derivable f rom their corresponding scalar  potentials Qm 
" m  

a n d p ;  as 

where now m and p are the subscripts used to  denote the T M  and EK mode 

field components and the T indicates the wave transmitted in the uniform 
& 

plasma. The potentials and @; satisfy Eqs. (16) and (17) respectively, 

in t e r m s  of cylindrical Bessel functions involving the radial  variable P ,  

and an exponential z-direction variation with an exponent ip , being the 

z-direction separation constant. Similarly, the EM fields in the vacuum 
N N 

sheath can be found from the potentials and @$ which are solutions to 

(16) with o =O., where the I and R denote the wave incident on the vacuum 

sheath-uniform plasma interface from the antenna, and that reflected back 
P 

to  the antenna from the sheath plasma interface. 

A further Fourier  analysis over p is required. since the source 

excites a continuous 8 spectrum of waves. We thus define the t ransform 

pair  a3 

J 
-co 



* * 
The spectral  solutions @: and @: can now be written 

with H(2) the cylindrical Hankel function of the second kind and order  zero,  
0 

and 

where the -root of h m u s t  be used to obtain the proper field behavior a t  

infinity. In a sim2ar fashion 

where 

The specification of the problem is completed by introducing the 

boundary conditions to be satisfied by the fields at the sheath-plasma interface 

and the cylinazr surface from which the A -  coefficients a r e  to be obtained, 

These a r e  continuity of the tangential magnetic and electr ic  fields a t  the 

sheath-plasma interface, as well a s  the vanishing of the normal electron 

velocity there, thus assuming the sheath-plasma interface to  elastically 

reflect the incident electrons. 

considerable cr i t ic ism; it is an  over simplification, but seems to  be an 

approximation consistent with that of represexting the actual sheath by the 

The la t ter  boundary condition has received 

14 



vacuuI?, sheath xxcde!. 

fur ther  detail. 

This quzstion is diszusszd by ?VliEei- (1$6$) in 

A last  boundary condition is that  the z-component (note that there  

is no @ -component of electric field) of the electric field vanish everywhere 

on the cylinder except at  the slot, where it equals the excitation field, 

- e&,z, t)=vo(t) /6; IZ I = 6 / 2  

=O 1215 6 / 2  (22 )  

where c is the cylinder radius. 

swept in frequency. 

We would like to solv'e the problem Vo(t) 

This would require finding the antenna current as a 

function of frequency in order  to  perform the transform with respect t o  

frequency. Thus for  the present, with no loss of generality, we assume 

so that 

v o ( w ) = v o ~ ( w - w ~ ,  2Tr 

where ~ ( W - W ' )  is the delta function. The question of the antenna response 

to  a source of finite t ime duration, and thus having a spectrum of frequencies 

wi l l  not be considered further in this report. 

of the antenna to  the single excitation frequency o=2~rf,  and 

We thus obtain the response 

is obtained. 

form as 

The boundary conditions may then be written in  spectral  

AT 

AT 

m 

P 

0 

s(p ;I 
0 O I  



where 

iAl = 

- 
c 

and c and s are  the antenna and sheath radii  and the prime indicates 

differentiation with respect to argument. A solution for the various 

coefficients A: is straightforward, with the result  

16 



The Wronskian relations W(c, s) and W(c, S I )  are 

The field quantities of interest  a r e  then obtained f rom their  

respective inverse Fourier  transforms. In particular,  the antenna current 

is obtained from 

r -03 

L J 
-03 

17 



The w' integration is readily performed, since the source is monochromatic, 

i w t  =I(z, w ) e  

and xL 
note that 

current , 

s given by Eq. ( 2 9 )  with S@) replaced by s('(B). It is interesting to 

the f i rs t  part  of the integral in Eq. ( 3 5 )  is the free-space antenna 

which i f  we denote by Io(z, w), we can write 

R and I(z, w)-I  ( z ,  w ) = A I ( z ,  W) - 
Ipt A 

dP 0 with A I( Z,w)zT- 

O -V 

iA2)(kEoc) i T o  - 

so that AI(z,  w) gives the change in antenna current as a result of the plasma. 

We note that K z  -DO in the limit U-0 and AI(z,  W) becomes zero as required, 

i f  the plasma is removed. 

The numerical evaluation of I (z, w) has  received considerable 
0 

attention in  the l i terature;  attempts have a l so  been made to obtain asymptotic 

expressions f o r  the integral. 

which we denote Io,, has an integrable singularity at P=KEo(Duncan, 1962) 

It is easily shown that the real part  of Io(z, w), 



but that the imagir1ar.y par t ,  1 cvriiairiS rioii-iiitegi-abk sirigulai-itles of oi' 
opposite sign on either side of P=K 

entirely f rom the interval 0 to KEo. 

particularly in I oi' 

impossible; this is discussed in the next section. 

. Further, the contribution to Ior comes 

The presence of these singularities, 

makes the numerical evaluation of Io difficult, but not 

Eo 

It is also evident that the&(z, o) integral has  the same types of 

singularities as associated with I 

argument forms fo r  the Hankel function; the details a r e  shown in Appendix A. 

This is shown quite readily f rom the small  
0' 

It is possible however to give an expression for  I (z ,o)  which does not have these 

non-integrable singularities. We do this by giving an alternative expression for 
T 

L \ 

If we insert  this expression into Eq. (33)  along with (29) for A: and 

integrate over o', we obtain 

where 
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and 

It may be verified (as shown in Appendix A) that (39) contains no non-integrable 

singularities as long as the electron collision frequency is non-zero. 

event that u=O, singularities determined by KE, Kp and s -c  do occur. 

singul.arities a r e  discussed by Seshadri ( 1965b). Consequently, the introduction 

In the 

These 

of electron collisions in the formulation makes the problem numerically more  

tractable as w e l l  as physically more realist ic.  

We can finally obtain the antenna admittance Y by finding the 
* 

current at z= 6 / 2 ,  and forming the ratio 
P 

This is the quantity of most interest  to  us  in this investigation, and for  which 

we wi l l  present the most extensive numerical results.  During the evaluation 

of the integral for  Y(w), we can also evaluate the other Fourier  coefficients 

( 2 7 )  and (28) from which the field quantities of interest  may be obtained by 

inverting the corresponding Four ie r  integrals. We could for  example, examine 

the power f low in the plasma in the EM and EK waves as a function of p and z. 

Information of this type should provide some idea of the pr imary interaction 
I 

volume of the antenna with the plasma, f rom which we may deduce the effective 

antenna sampling volume in  relation to the antenna's use as a probe to determine 

:I: Note that B ( w )  is finite only for non-zero 6. 
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the ambient plasma properties. 

a s  a function of z, particularly since a decreasing current magnitude with 

increasing z may give an order  of magnitude indication of the length of a finite 

antenna beyond which i t s  impedance may differ negligibly from that of the 

infinite antenna. This is because the importance of current reflections from 

the end of the finite antenna becomes l e s s  with decreasing current magnitude. 

Since our pr imary interest  in the present report  is the antenna admittance, we 

wi l l  defer a detailed study of the antenna near fields to a subsequent report, 

where this question, along with the rel.axation resonance problem, wi l l  be 

considered. Since the numerical technique of inverting the nearly singular 

Fourier  integrals which occur in this formulation is of great importance if 

the analysis is to be carr ied further, section I11 of this report wi l l  briefly 

describe the procedure used. 

II. 2 The Inhomogeneous Sheath 

It is also of interest  to find the antenna current 

The same set  of linearized equations is used to obtain the fields 

in the uniform plasma for the inhomogeneous sheath model a s  for  the 

vacuum sheath model i. e . ,  Eqns. (1) - (6) .  For  the sheath itself however, 

the linearized set  of variables given by (7) contains in addition a static com- 

ponent of electron velocity and electric field. In the present study, where 

we take the antenna to be at floating potential, i t  may be shown to be a 

reasonable approximation to neglect the static electron velocity ( see  Miller, 

1966),  which is what we do here, so that (7)  is the same except for (7a) 

which becomes 

- -  E (r, t )=E( r  - -  ) +e(_r, t ) ;  le /<-=I? (7a) '  

and N and P a r e  now functions of - r. 
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The linearized equations ( 8 )  - (11) a r e  unchanged except for ( loa )  

which is now 

After the Fourier transformation is applied, Eq. ( loa) '  becomes 

with the other equations a s  given by (12) ,  (1 3) and ( 15). 

(14a)' 

The presence of the t e rm containing - -  E ( r ) / N ( r )  - in (14a)' prevents 

u s  f rom decomposing the total electric field into E M  and E K  components a s  

for  the uniform plasma. This is most readily seen by writing an expression 

e L(r)=- E ( r )  -- 2 - -  mv r 

N rJ 

We see thatVx:(r, -- w) and v a r ,  -- w) wi l l  contain t e r m s  in both -- h(r ,  4 and p(r ,  - a), 

in contrast to the uniform plasma case where -- L(r)=O, with the result  that 

the magnetic field and dynamic electron density a r e  coupled. Two coupled 

22 



1.4 n \  wave equations similar to  io^ and ( i 7 )  iiiay be  ohtiaiiied as 

If the plasma is uniform, then P=L=O - -  and (43) and (44) reduce to (16)  and 

(17).  

potential variation in the sheath. We take the static potential Go to vary a s  

The inhomogeneous sheath is specified for our purposes, by the static 

@o=@c 

where pc is the cylinder potential, and M is an adjustable parameter.  We 

obtain Qc from a form due to  Self (1963) a s  - - 

where mi is the ion mass.  The staticelectric field is then obtained a s  

- -  E(r)= -vQ>, 
while N ( r )  - is given by 

with Nco the electron density in the uniform plasma. 

discussion of the applicability of this description for the static sheath is 

given by Miller (1966).  

A more complete 

The f i r s t  order  differential equations corresponding to (43) and (44) 

a r e  more  convenient to use in the numerical solution which is required, and 

are, after a Fourier transform with respect to z, 



‘e 
S‘ _ e + i w ( l  LiV) % 
e = -  ipe - P 

s s  
e =icq..io$,+ipe 

Z P 

Z z P E,v; 

where the denotes differentiation with respect to p .  

As for the vacuum sheath model, the fields in the uniform plasma 

a r e  derivable from scalar  potentials involving unknown Fourier  constants 

to be determined from the boundary conditions. The total number of integration 

constants to be determined is 6; 4 for  the sheath fields and 2 for  the t rans-  

mitted fields in the uniform plasma. The boundary conditions which a r e  

used here  a r e  continuity of the tangential e lectr ic  and magnetic fields, the 

normal fluid velocity and the dynamic electron number density a t  the sheath- 

uniform plasma interface ( p = s ) .  At the antenna surface (p=c) ,  we require the 

z-component of the electr ic  field to be zero everywhere except a t  the slot, 

where i t  equals the excitation field a s  before, and we use an admittance 

relation between the normal electron velocity and dynamic electron number 

density (see Cohen, 1962), given by 

t.x=YBn (50) 

The boundary condition equations can be written then, af ter  eliminating 

the Fourier coefficients of the transmitted fields in  the uniform plasma, as: 
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P = s :  

The surface current on the antenna is found from 

Iz(z ,  t )=2~rch (c, z, t )  P 

iwt =Iz( z, w)e (53) 

where 

fo r  a monochromatic source of frequency w . 

While the solution for the antenna admittance follows formally for 

the inhomogeneous sheath in the same manner as for the vacuum sheath, 

there is one important difference. The integrand function for the vacuum 

sheath is straightforward to evaluate, involving an analytic expression 

containing functions which a r e  readily (and rapidly) calculated. For the 

inhomogeneous sheath however, evaluation of the integrand function requires 

the numerical  solution of 4 coupled, complex, f i rs t  order  differential 

equations across  the sheath region, a process which by comparison, is 

much more  time consuming than for the vacuum sheath. In addition the 

numerical  solution of a boundary value problem when the boundary conditions 

a r e  expressed at  two boundaries such as  we have here, is straightforward, 

but more  time consuming than for  the initial value problem, where the bound- 

a r y  conditions a r e  all  given at  the same location. This is an additional factor 

to consider in obtaining a solution for the inhomogeneous sheath problem. 
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Consequently, while a solution should be obtainable in principle, the 

practical aspect of the expense involved may deter u s  f rom obtaining 

numerical results. 

for the sake of completeness, but no calculations pertaining to the 

inhomogeneous sheath a r e  included in this  report. 

The inhomogeneous sheath analysis is included here  
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111. Numerical Analysis 

There a r e  many standard methods fo r  the numerical evaluation 

of definite integrals, which fall in  the category known as numerical quadra- 

ture.  

piecewise by polynomials and integrating these exactly. 

quadrature scheme is Gaussian quadrature, of which there  a r e  many types, 

depending on the weight function which may be factored f rom the integrand 

function. 

are  typically determined by the zeroes of some type of polynomial, and as 

a resul t  are  not equally spaced. This is a great disadvantage in  integrating 

functions which are complicated, and consequently time consuming to eval- 

uate, as in  our case,  since in any iteration procedure o r  change of interval 

s ize  to  improve the accuracy, it is desirable to utilize previously calculated 

integrand values. 

N-Jmerical quadrature is the process of approximating an integrand 

One example of a 

A character is t ic  of Gaussian quadrature is that the abscissa points 

A different class of quadrature formulas based on equally spaced 

abscissa  points, is the Newton-Cotes method, special  cases  of which are the 

well-known Trapezoidal rule for  the order 1 and Simpson's rule (a lso called 

the parabolic rule) for  the order  2. 

the Trapezoidal rule, called Romberg integration, employs Richardson's 

deferred approach to  the limit (Ralston, 1965, p. 118). This is a technique 

whereby two approximate resu l t s  are  combined in a cer ta in  way to get a 

third and hopefully better result ,  

A particularly useful method for  applying 

The technique is used in Romberg's 

integration by calculating two values, using the Trapezoidal rule, for  an 

integral  over a fixed interval, the second value being obtained using twice 

the number of subintervals as employed for  the first. Following Ralston, 
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we denote these quantities by TOk where 

( 0 .  5 f +f  +f + . . . +f k +O. 5 fzk) b-a 
TOk' 0 1 2  2 - 1  (54) 

and the integral whose value we desire  is 

J= $ f (x)dx 

f =f(a+nh);n=O, 1 , .  . . , 2 n 
k 

We see  that the quantities To, k; k=O, 1, . . . a r e  successive Trapezoidal 

approximations to J. 

We then define, using Richardson's deferred approach to the limit, 

);k=O, 1, .  . . (55a) 
1 

T1, k = 3  (4 TO, k+l-TO, k 

which upon using (54) can be shown to reduce to Simpson's rule. 

be made more  general by writing 

This can 

m = l ,  2, . . . 
k=O, 1, . . . 

The approximation T is the composite Newton-Cotes rule of order  4 

with 2 subintervals, but for m-2 there  is no direct  relation between T 

and a Newton-Cotes composite rule  (Ralston, 1965). The Romberg integration 

answer is given by Tm, o. 

2, k 
k 

m, k 
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The iitility of the Romberg integration scheme may be seen by 

observing that Simpson's rule is a generally more accurate integration 

technique than the Trapezoidal rule, f o r  the same number of abscissa points. 

Ralston presents  an example, the integration of 

rule gives 7 place accuracy (1 unit off in the seventh significant figure) with 

33 abscissa  points, whereas the Trapezoidal rule gives only 6 place accuracy 

( 2  units off in the sixth figure) with 1 2 9  absicssa points. Romberg integration 

on the other hand, gives 7 place accuracy with only 1 7  abscissa points, f rom 

d x/x, for  which Simpson's is 1 

T4, 0' 

Along with i t s  generally greater accuracy, Romberg integration has  

another very attractive advantage in that the convergence of the successively 

calculated T 

the e r r o r  arising in each integration interval (a, b). 

venient to  arrange the T 

values provides a built-in testing procedure for  estimating 
m, 0 

In practice, it is con- 

in a triangular array,  as follows: 
m, k 

m 

m, 0 
1. T 'I' l , m - 1  . 

The first column thus gives the Trapezoidal rule answers,  while the second 

gives answers  obtained f rom Simpson's rule,  and the diagonal gives the 

Romberg answers. Convergence towards the correct  result  occurs along 



the diagonal and down the left hand column. In additinn, the answers con- 

verge towards T 

gives an  earlier indication of convergence to a desired accuracy than does 

the diagonal. 

1965, p. 125) 

along each row, and generally the row convergence 
m, 0 

The T-a r ray  for  the example mentioned above is (Ralston, 

m T  
O J  

1. 333333 

1. 166667 1.111111 

1. 116667 1 .10000 1 .099259 

1. 103211 1 .098726 1 .098641 1 .098631  

1.099768 1.098620 1 .098613 1 .098613 1 .098613 

1. 098902 1 .098613 1.098613 1 .098613 1 .098613 1 

1.098685 1 .098613  1 .098613 

1.098630 1 .098612 1 .098612 

098613 

The answer, correct  to 7 f igures is 1.098612.  

The superiority of the Romberg method is very evident in this example. 

Care must be taken in i t s  application however, a s  the T 

widely about the correct  answer and actually require more abscissa points 

than the T 

sharp maxima (or minima) in the interval (a, b). 

convergence can not be relied upon to indicate the accuracy of a given T 

An additional drawback in this situation is that, since the abscissa points a r e  

may oscillate 
m J  

values to obtain a desired accuracy, for functions having a 
0 ,  m 

In this case then, the row 

m, @ 

evenly distributed within the interval (a, b), many more  points a r e  obtain- 

ed outside the maxima (minima) than required in order  to get the nec- 

e s sa ry  abscissa spacing with the maxima (minima). Thus, the Romberg 

method is very powerful in the integration of monotonically varying functions, 
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cation of the Romberg integration scheme to our specific problem is briefly 

discus sed. 

It should be noted that while the Romberg answer T can be 
m, 0 

obtained by generating the T-ar ray  discussed above, an answer can also 

be obtained in the more usual way, a s  

2m+k 

r1 
Tm,k=h  L d. f(a+jh) 

Jm 
(56) 

j = O  

where 

The d weights a r e  obtained as (Bauer, et al. , 1963), 
j m  

+ 2cm1+4cm2+. . . +2 P c ( 5 7 4  
djm=cmO mP 

with p the highest power of 2 by which j is exactly divisible (i. e. , for  j odd, 

p=O) and 

c -  ; k=l ,  1 , .  . . m  
mk-3* 15- 63. (4k-1) 

m 

j =  1 

The pr ime on 1 in (56)  indicates the end points a r e  to be taken with 

one half the weight. 



Obviously, the abscissa points to be used a re  required before the appli- 

cation of (56).  The utility of this expression f o r  the integral comes in the 

situation of interest  in this report, where the values of several  integrals 

may be desired. If the integrals have s imilar  variation with the integration 

variable, then the convergence test, with i t s  attendant t ime and storage 

requirements, can be performed for one of the integral%the others being 

obtained from (56). 

The problem facing us  is that of evaluating an  integral over the 

range 0 to a. We obviously can not c a r r y  out the integration numerically 

over this range, and consequently seek to  determine some finite upper limit 

beyond which the truncation e r r o r  arising from the neglected portion of the 

We 
T' 

integral is smaller  than an  acceptable relative truncation e r r o r ,  E 

mention again, as w a s  ear l ie r  pointed out, that the integral (39)  is convergent 

only i f  the feeding gap thickness 6, is non-zero. 

truncation e r ro r ,  we  write the current, following (39), as 

In order  to  establish the 

I( 2,  W)'IA+IB ( 5 8 4  

O J  

m 
I c 

IB= I I(p, w)cos@ z)sin(p 0/2)ddP 

and we seek to find a value for B where the truncation e r r o r ,  due to  neglecting 

the contribution of I to I(z, o), is l e s s  than ET. It may be shown that as B 
P -a, I@, w ) - ~ P - ~  f rom the large argument expressions for the Hankel 

functions. We can then write 



with 

now 

P‘ 

we get 

The integration of (39) was 

(59) 

(60  

terminated wherever (60) was satisfied, with B 

equal to the current value of p. 

Still required is a means of choosing the optimum interval size for 

applying the Romberg integration. Obviously, the optimum interval size 

is the one which yields the highest accuracy with the fewest abscissa points. 

Since the near-singularities of the function being integrated a r e  not a pr ior i  

known in either location o r  width, the only reliable way for choosing the 

interval size is to  have this done by the computer in the course of the cal- 

culations. The manner by which this was accomplished is briefly a s  follows. 
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The integration is begun at /3 =0, with some initial specified interval 

1 1  width w (a =0, bl=al+wl). 

@ = a l  and /3=a + w  

calculated. 

that the second row of the T-a r r ay  may be obtained. 

is then performed, which requires that 

The integrand is evaluated, successively, at 

and the f i r s t  entry in the T a r r a y  for that interval is 

A third absicssa point, a t  /3 =al+w1/2, is then calculated, so 
1 1 ’  

A convergence tes t  

where EC is maximum acceptable convergence e r r o r .  The failure of this 

tes t  leads to two new abscissa points, at /3~ = a  +w / 4  and /3 =a1+3w1/4 and 

the generation of the third row of the T-ar ray .  The convergence tes t  then 
1 1  

requires  that 

I(T2, O - T 1 ,  P T 2 ,  01 EC (61b) 

Failure of this test  could lead to still  finer subdivisions of the (a l ,  b l )  

interval, until a convergence test of the form 

is satisfied. It should be observed that we a r e  employing a row convergence 

test ,  rather than a diagonal test, since as mentioned above, it was found that 

r o w  convergence gave an ear l ier  indication of acceptable accuracy than did 

the diagonal. 

A s  w a s  mentioned previously, this procedure is generally not desirable, 

since the bracketing of a sharp maxima by the interval (a l ,  b l )  resul ts  in  an 
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as w e l l  as a n  excessive number of abscissa points, outside the maxima. 

Instead, i f  convergence is not obtained from a maximum of 5 abscissa 

points in the interval (i. e . ,  mG), the interval is divided in two, and a 

T - a r r a y  calculated fo r  the f i rs t  of these two new intervals, (al, al+w1/2), 

f rom the 3 abscissa points already obtained. Failure of the convergence 

test  here  leads to  the calculation of 2 additional abscissa points for this 

new interval (a a + w1/2).  If convergence is sti l l  not obtained, two 1' 1 

,new intervals are formed from (a l ,  a + w /2), with this general  procedure 

being continued until the desired convergence is established. 

hand, i f  convergence had been obtained on (a b ) with m<2, then the 

interval width w = 2 w  b ). We point out 

that 5 abscissa  points a r e  allowed per  interval, ra ther  than only 3, since 

1 1 

On the other 

1' 1 

is used for the next interval (a 2 1  2' 2 

the failure of convergence with 3 points would then require 5 points to  be 

obtained anyway i f  the interval is then halved, because 3 abscissa  points a r e  

required for  each of the two new intervals to  test the convergence. 
I 

W e  thus obtain a sequence of intervals of width such that the desired 

convergence occurs on each interval with no l e s s  than 3 and no more than 

5 abscissa  points being used. Note that the end points of the intervals are 

used twice, once for  each adjacent interval. The convergence e r r o r ,  EC' 

is adjusted during the calculations to  keep the absolute e r r o r  arising from 

each interval below an  acceptable level relative to the largest  contribution 

of the preceding intervals. The reason for  this is to  avoid unnecessary 

calculations which do not increase the accuracy of the integration. F o r  

example, i f  the contribution t o  the integration of interval i is C i and the 
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largest  contribution of the preceding i-1 intervals is C. at interval i - j ,  1-j 

and Ci ”r C.-.  with y >1, then C.+C @( l+lO-Y)C 
1 3  1 i-1 i - j .  

Thus, 
if ‘i-j 

has  a normalized accuracy no less  than E 

to a normalized accuracy better than loy  EC. 

maintain the same absolute accuracy in each interval of the integration. 

The advantage of doing this is shown in Appendix B. 

there  is no need to know Ci 

In essence, we attempt to  

C’ 

In practice, the rea l  and imaginary par ts  of the current were tested 

separately for convergence. It was found that this computation scheme 

consistently chose the smallest  interval size a t  the location of maxima in 

the integrand, which i s  the desired result .  The ratio of the largest  to the 

smallest  abscissa spacing was found to be a s  large a s  l o 6  to l o 7 .  An 

interesting aspect of the method is that, in the region of largest  contri- 

bution to the integral, the contribution from the successive intervals were 

generally on the same order  of mangitude, which i s  desirable from the 

e r r o r  analysis. It should be noted that if the abscissa spacing becomes too 

small  relative to the current value of p,  it may be necessary to use double 

precision calculations, if the change in /?I is smaller  than the least signifi- 

cant figure available in the computer. 

When other quantities a r e  desired in addition to the slot current, 

the necessary integrand values f(a.+jh) may be stored, and the computation 
1 

performed using 

F= 

m+k 

f .=h  1’ d. f(ai+jh) 
1 1m 

j = O  



is iiie initial abscissa aiid EL 

In order 

--.L-...- W l l t = l t  I, 11 dllu --- -1 u 1̂ 

point fo r  each i ' th interval with N the total number of intervals. 

to  save t ime retrieving the quantities required, these were stored sequen- 

tially a s  calculated, and an index number used to locate them in storage a s  

the summation (62)  i s  performed. 

f rom the author. 

g ik -2~  by (55) alii; (57a), jm i 

A copy of the program may be obtained 
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IV. Numerical Results 

IV. 1 Free Space Admittance 

It h a s  been shown previously, that the antenna current  (and 

admittance) can be expressed a s  the sum of two components, one being 

that for the case where the antenna is located in f ree  space, and the 

other arising from the effect of the plasma. 

the free space value of the antenna admittance brought about by the plasma 

is of interest, requiring a consideration of the free space admittance values. 

Since the expression for the free  space admittance contains non-integrable 

singularities on the rea l  p-axis, the problem of numerically obtaining the 

f ree  -space admittance is not straight forward. 

The relative change f rom 

A number of papers have appeared rather  recently on the free-  

space admittance of the infinite cylindrical antenna. 

the problem in some detail, outlining a computation scheme for obtaining 

numerical admittance values which involves a s e r i e s  approximation to the 

exact integral. He gives some admittance values for K=KEoc ranging from 

0.01 to 0.15, but since he uses  a delta function gap and performs an averaging 

process in  the vicinity of the gap, his susceptance values a r e  of questionable 

value, though the conductance values can be used since the conductance is 

independent of the gap thickness. 

Duncan (1962) examined 

Chen and Keller (1962) and Fante (1966) attempt to derive analytic 

forms of the admittance by using approximate expressions for the Hankel 

functions for  various ranges of the p-integration. 

contain errors ,  those of Chen and Keller being pointed out by Fante, 

while Fante's e r r o r s  a r e  shown by Miller (1967).  These attempts 

Both of these papers 



tz, give a closed foi-iii f u r  the f r e e  space admittance a r e  useful in 

providing a rough approximation to the exact values and the influence 

of the various parameters  involved, but the resul ts  a r e  not accurate 

enough for our purpose. 

Instead of approximating the integrand in order  to obtain num- 

er ica l  f r ee  space admittance values a s  w a s  done in the papers quoted, 

we have chosen to deform the contour in integrating the exact expres- 

sion for the current, given by ( 3 6 ) .  This is most easily done numeri-  

cally, by integrating upward, along the positive imaginary fl -axis, and 

then proceeding at right angles parallel to the positive r ea l  6-axis, until 

the truncation e r r o r  is acceptably small. 

downward to the rea l  6 -axis once the singularity at p =KEo has been 

passed, but the contribution to the integral of this segment may be 

neglected if  the path parallel to the real  axis is carr ied fa r  enough to 

obtain the smal l  truncation e r r o r  desirable. The contour used for 

obtaining the f ree  space admittance is shown in Fig. 1. 

W e  present in Fig. 2 the f ree  space admittance for an antenna 

The coutour can be brought 

1 cm in radius, and various gap thicknesses 6, as a function of frequency 

between 300 KHz and 10 MHz. 

is chosen to  correspond to  the values expected to  apply t o  a projected 

experiment in the ion0 s phe r e. 

This antenna radius and frequency range 

We observe that the conductance and susceptance show a rather  

slow increase with increasing frequency, and that the conductance exceeds 

the susceptance over the entire range, 

sensitive to changing gap thickness, fo r  this  frequency range, though 

Further ,  the susceptance is not 
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IMAGINARY fl  
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Fig. 1. Integration contour for obtaining the free-space admittance. 
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Fig. 2. The free-space infinite cylindrical antenna admittance as a function of 
frequency with the exciting gap thickness, 6 ,  a parameter, and a radius, c, of 1 
cm. 
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a s  shown by M i l l e r  (19671, the susceptance dependence upon gap 

thickness increases  with increasing frequency. The resul ts  of Fig. 2 

wil l  be useful to see the perturbing effect of the plasma upon the antenna 

admittance. 

IV. 2 Admittance for  the Vacuum Sheath Model 

We present in Fig. 3 the antenna admittance a s  a function of 

P 
frequency, for an antenna of 1 c m  radius, with 6 = 1 mm, f = 1. 5 MHz, 

u = lOKHz, 

Debye lengths (DL ) *  

finds in  the E to  F region of the ionosphere, and the sheath thickness 

is a reasonable value for an object a t  floating potential in  a plasma. 

For  these parameters,  D = 1.5998 cni, so that s -c=  7.9988 cm. We 

note that the antenna diameter is on the same order  a s  D , which is a 

situation where the sheath thickness is dependent on the rat io  c / D  R 
(Laframbois, 1966) ,  and is reduced in value relative to the case where 

c > > D A  . 

T= 1500°K, and a vacuum sheath thickness X, of 5 electron 

The plasma parameters  a r e  typical of what one 

k 
e 

The admittance curve of F ig .  3 exhibits a zero in the susceptance 

near the plasma frequency, the calculated value changing from inductive 

to  capacitive between 1. 5 and 1. 5125 MHz. 

hand, is seen to reach a definite minimum below the plasma frequency, 

between 1.475 and 1 .5  MHz. Both the conductance and susceptance ex- 

hibit maxima below the plasma frequency, 

conductance, with two maxima for  the susceptance at  about 0 . 7 5  MHz 

and 1 MHz. 

frequency below the maxima. 

The conductance on the other 

at about 0.75 MHz for  the 

The susceptance fal ls  off exponentially with decreasing 

This resonance below the plasma frequency 
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is quite interesting, and wi l l  be discussed further below. 

frequency were zero,  the conductance f rom this theory would of course 

be zero,  below the plasma frequency of 1. 5 MHz. 

If the collision 

F o r  the purposes of comparison, we show in Fig.  4a the admittance 

of a finite dipole antenna of 1 cm radius and 10 feet (3.048 m) half length (h) 

immersed  in a uniform, cold plasma having the same electron density 

and collision frequency as for  the graph of Fig. 3, calculated from the 

theory of King et. a1 (1961). A l s o  shown is the f r ee  space antenna admit- 

tance. 

electrically short. In the discussion to follow it will be assumed that in 

speaking of finite antennas, we will be dealing only with short  antennas, 

i. e . ,  where KEo h < 0.1, so that B >> 

Note that a t  1 MHz, KFo h z 6  x s o  that the antenna is 

G 
0 0' 

-We see that while the susceptance is quantitatively similar to the 

finite antenna resul t  of Fig. 3 near the plasma frequency, the conductance 

curves fo r  the two antennas are not even qualitatively s imilar ,  varying 

by several  o rders  of magnitude. It is somewhat surprising to  find that 

the power absorbed by the finite antenna (which is numerically equal to 

one-half the conductance) exhibits no singular behavior a t  the plasma 

frequency, a s  is shown by the infinite antenna. 

for this  difference in  behavior of the finite and infinite antenna near the 

plasma frequency, in  the following way. 

W e  may possibly account 

We note f i r s t  of all, that an infinite antenna in free space loses  

power through the radiation field, (far-field) and surface waves. It is 

of interest  to note that it may be shown f rom Seshadri 's  (1965b)results 

fo r  the far field radiation resistance calculations, and our resu l t s  of 
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Fig. 2, that for  the antenna considered here,  the surface wave con- 

tribution to the antenna conductance exceeds that due to  the radiation 

field, for the f ree  space situation, by a factor of about ten, at 1 MHz. 

If the antenna is put into a lossy plasma, then collisional absorption, 

which may be expected to be most important in the near  field where the 

fields a r e  strongest, is an additional way for  the antenna to  lose power. 

Now it may be concluded (as wi l l  be shown below) that collisional absorp- 

tion, at least for the magnitude of collision frequency and plasma frequency 

used here, is small  in comparison with the power lost in the radiation 

field and through surface waves, at  2 MHz. 

decreased towards the plasma frequency, the medium impedance ef - 

fectively increases, thus decreasing the power car r ied  away by the 

surface waves and  radiation field, with a resulting decrease in antenna 

conductance, a s  shown by Fig. 3. The conductance does not decrease 

to  zero of course, because of the near field collisional absorption which 

becomes then the predominant loss  mechanism at and below the plasma 

frequency . 

A s  the operating frequency is 

For  the finite antenna in free space on the other hand, power is lost 

only in the radiation field and the introduction of the lossy plasma medium 

resul ts  in a substantial increase in the antenna conductance, for these same  

plasma parameters,  because of the resulting power loss in the near  field due 

to  collisional absorption. 

the short antenna, the near  field absorption may be the predominant factor 

in determining the conductance, near  the plasma frequency. This  may 

The conclusion to  be reached from this  is that for  
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be qualitatively shown by writing the free space admittance a s  

Y o  = Go + iB 0 (63) 

When the antenna is put into a lossy medium of relative permittivity 

then 
rJ 

+Y = E;- (Go + iBo) = iBo (64a) 

since Go<< Bo. Near the plasma frequency then, 

and from Fig. 4a, Bo (f=l.  5 MHz) = 1. 6 ~ l O - ~  MHOS, s o  that 
-7 + B V = 1 . 7 ~ 1 0  

We may also deduce from (64b) that 

result  which agrees with the calculated values, and which also shows that 

the conductance does not have a minimum near f depending upon V 
andcd alone. 

MHOS, while the calculated value for G is 1. 8 ~ l O - ~  MHOS. 0 
- 2  near the plasma frequency, a 

PJ 

A s  a fur ther  illustration of the near field influence on the finite antenna 

conductance in the lossy plasma, we show the conductance only in Fig. 4b 

for collision frequency values of 10, 10 and 10 Hz. The susceptance was 

negligibly different from that shown f o r  u= 10 

not included. 

proportionately except near f where a minimum begins to appear at l o 2  Hz 

and which is quite pronounced at 10 Hz. 

2 3 

4 Hz in Fig. 4a, and s o  is 

We see  that a s  vis decreased in value, the  conductance decreases  

P 
This minimum occurs now since 
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for  u= 10 Hz, Bo V z  Go, and the resulting minimizing effect of G 

is large enough to show up. Thus a minimum exists in the finite antenna 

conductance, s imilar  to that of the infinite antenna, but requiring a very 

much lower electron collision frequency than is required in the case  of 

the infinite antenna. 

antenna behavior results from the reactive near  field interacting with 

the imaginary par t  of the plasma permittivity (which is determined by 

electron collisions) to produce in-phase currents  la rger  than those pro- 

duced by the in-phase field, unless, a s  noted, the collision frequency is 

very low. 

o r  

We may briefly note that physically, the finite 

We must remember in comparing these results that the finite 

antenna theory is for the cold palsma while the infinite antenna resul ts  

a r e  for the compressible plasma, and as such may not be meaningfully 

related. 

the cold plasma, so that the effect of the temperature may be shown, 

and in that case  a comparison of the two antennas may be more  signifi- 

cant. 

some actual antenna measurements in the ionosphere given by Heikkila 

(1965a) which a r e  given in Fig. 5. 

spherical antenna 11 .6  cm in diameter. 

seen in the admittance, below the plasma frequency, a feature not exhibited 

by the calculated results of Fig. 4. It should be observed that the mag- 

netic f ie ld  may have an influence on the measured admittance values of 

Fig. 5, but is not included in the theoretical calculations. 

Results will be given subsequently for the infinite antenna in 

It is in addition of interest  to compare the finite antenna resul ts  with 

This data was obtained using a hemi- 

A rather  sharp maxima may be 
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The discussion presented above may be briefly summarized by 

noting that generally, the conductance of the infinite antenna is decreased 

and that of the short  finite antenna is increased with respect to f ree  space 

values, when the antenna is in a lossy plasma and operated near the 

plasma frequency. 

near the plasma frequency is primarily a function of the near  field. 

susceptance of both is found to change from capacitive to inductive a t  

the plasma frequency. 

In addition, it appears that the conductance of both 

The 

In order  to get some idea of the influence of the finite electron 

temperature on the infinite antenna admittance, Fig. 6 shows the admittance 

for the same parameters a s  Fig. 2, except that T is now zero. In spite 

of the fact that D -0 when T -0, the same numerical value of vacuum 

sheath thickness i s  used in obtaining the results of Fig. 6 s o  that we may 

to some extent attempt to separate the sheath and temperature effects. 

It may be seen that the susceptance for the zero temperature case is 

s imilar  to that for the finite temperature curve of Fig. 2, the pr imary 

difference being that the zero temperature susceptance is slightly more 

capacitive, except in the vicinity of 0. 85 MHz, where the zero  temper- 

a ture  susceptance does not exhibit the oscillation present in the former 

case.  The conductance is also practically unchanged above the plasma 

frequency, but is considerably different for f < f  

perature conductance is everywhere less  than that when T = 1 .5  x10 

A sharp minimum in the conductance is again found at  about 1.475 

MHz, but with about one-fifth the magnitude of the finite temperature 

case, about the same ratio shown by the conductance maximum near 

R 

where the zero  tem- 
P’ 

3 

K. 0 
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0 . 7  Mhz. 

wi l l  be considered further below. 

The significance of the change in conductance with temperature 

The antenna admittance for zero  sheath thickness and with the 

Same parameter values a s  Figs. 2 and 6 a r e  shown respectively on Figs. 

7 and 8, f o r  T = l .  5 x 1 0 ~  OK and T=O OK. 

in both the conductance and susceptance for all the frequency range shown 

There is now a noticable difference 

fo r  the two values of temperature. 

again more capacitive than the finite temperature case, for frequencies 

above 0 . 7  MHz, but does not peak below f s o  t h t  below 0. 7 MHz, the 

zero temperature susceptance is now more  inductive than the la t ter  case.  

The zero temperature susceptance is 

P’ 

The conductance i s  again l e s s  for the zero temperature case, and like the 

susceptance does not peak below f 

A conductance minimum i s  again seen below f 

than that observed for the 5D thick sheath. Above f the finite temperature 

conductance f o r  the sheathless case differs by less  than 1 percent from the 

a s  does the finite temperature result. 
P 

but i s  broader in each case 
PJ 

.E P’ 

5 9 thick sheath values for both temperatures.  

Perhaps the most interesting and significant feature of the results 

shown in Fig. 3, 6, 7, and 8 i s  the admittance maxima exhibited by all  but 

the sheathless, zero temperature case. This is especially s o  because the 

experimental results of Heikkila in Fig. 5 also show an admittance maxima 

below the plasma frequency. The calculated results for the short  l inear 

antenna in a cold plasma of Fig. 4 have no comparable maxima, on the 

other hand, but do bear a remarkable similari ty to the corresponding infinite 

antenna curves of Fig. 8. 

supposition previously stated, that the near fields of bbth the infinite and 

This similarity would seem to strengthen a 



Fig. 7. 

io-*, 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

u- =10KHt3  
T = 1.5X10 O K  

c = 1.0cm 
8 = O.lcm 
x = o  \ 

\ 

lO+l I I I I 
0.5 I .o I .5 2.0 0 

f ( MHzl 

The infinite antenna admittance as a function of frequency fo r  the 
warm plasma, with zero sheath thickness. 

53 



- 
in 
0 
I 
2 
m 
W- 

Fig. 8. 

-2 
IO 

tI4 

05 

f 
fp = 1.5 MHz 
2/ = IO KHz 
T = O  
c = I.Ocm. 
8 =O.I cm. 
x = o  

I 0.5 I .o 1.5 2.0 

temperature plasma and zero sheath thickness. 



finite antennas exercise the predominant influence on t h e  adm-ittance 

near ,  and below, the plasma frequency, so that consequently, it may 

be resonable to infer the qualitative frequency variation of the finite 

antenna in this frequency range from the infinite antenna resul ts .  

A tentative conclusion might be reached from these resu l t s  that 

a finite plasma electron temperature and/or a sheath are required to 

obtain a n  admittance maxima below the plasma frequency. 

ance maxima appears to be related to the rectification resonance de- 

scribed by Takiyama (1960) and at first thought to  occur at the plasma 

frequency. Subsequent consideration by Harp and Crawford (1964), has 

indicated that the resonance lies below f 

thickness and electron temperature, a resul t  which our  findings would 

seem to support. 

This admitt- 

and is related to the sheath 
P 

It is thus found f rom these calculations, that the susceptance of 

the infinite antenna shifts in the capacitive direction with a decrease in 

electron temperature on both s ides  of the plasma frequency. 

sheath decreases  the magnitude of the susceptance, in both the capacitive 

and inductive susceptance regions. 

by the sheath and finite temperature below the plasma frequency, where 

a decrease in temperature or  sheath thickness produces a decreased con- 

ductance. 

plasma frequency, but plays a greater role  in the antenna behavior below 

the plasma frequency. 

Removing the 

The conductance is primarily affected 

It appears  that the EK wave is only weakly excited above the 

This  finding that the EK wave h a s  only a weak effect upon the 

antenna conductance above f is in contrast to  the resu l t s  of Wait (1966), 
P 



Seshadri (1965b)and Cohen (1962),  who found the EK wave to be quite 

strongly excited in their  analyses. 

nas however, and their  resul ts  may possibly be attributed to  the small  

antenna dimensions. 

but considered only the radiation fields, and found that the power in the EK 

and EM modes were on the same order of magnitude. 

treatment includes the effect of the surface waves and near field absorp- 

tion, it might be concluded that the power put into surface waves and 

the near field is l e s s  sensitive to electron temperature than is the 

radiation field. In addition, since a s  has been previously mentioned, the 

radiated power is l e s s  than that lost bythese latter means, the effect 

of the electron temperature on the radiated power is masked. 

Wait and Cohen treated finite anten- 

Seshadri did analyze the infinite cylindrical antenna, 

Since the present 

Because the electron temperature does affect the antenna sus-  

ceptance below the plasma frequency, Fig. 9a shows the admittance 

at a single frequency, 1. 4 MHz, a s  a function of the temperature, with 

the electron collision frequency a parameter.  Fig. 9b presents the r e -  

sults plotted a s  a function of the electron collision frequency, with the 

temperature now a parameter.  

the conductance increasing in direct proportion to the collision frequency, 

a result  also obtained from the finite antenna analysis. It is also of in- 

te res t  to  see that the susceptance has  relatively little o r  no dependence 

upon the collision frequency, a result  which again is obtained for the 

finite antenna. 

temperature increases,  the conductance becomes l e s s  sensitive to chang- 

ing collision frequency, an effect which is shown in 9a as a coalescing of 

The T = 0 curve of Fig. 9b shows 

The most interesting aspect of 9a is that a s  the electron 
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the various collision frequency c i i r v e ~  with in r rpa  sifig terr,perature. 

is is seen that we may possibly interpret a large conductance below the 

plasma frequency, i f  we use the cold plasma theory, to indicate a la rger  

collision frequency than is actually the case. 

~ h u s  

It is of interest to note that the same range of variation in 

the electron collision frequency at a frequency of 2 MHz and electron 

temperatures  of 0 O K  and 1, 500 OK produced l e s s  than a 1 percent change 

in both the conductance and suscept ance. This result  for the conductance 

indicates that collisional absorption is relatively unimportant at this f re -  

quency in determining the power lost by the antenna, compared with the 

radiated field and surface wave. 

portance a s  the plasma frequency is approached. 

The collisional effects increase in im- 

Figure 10 presents the antenna admittance variation, a t  

1. 0 MHz, as  a function of the vacuum sheath thickness, with the electron 

temperature a parameter,  and a constant electron collision frequency of 

10 KHz. We see that an increasing sheath thickness leads to increasing 

conductance and increasing inductive susceptance, over the range of 

sheath thickness shown. 
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I V .  3 Summary 

A s  was stated in the introduction to this report, we would ideally 

like to analyze the impedance characterist ics of a finite dipole antenna 

immersed  in a plasma such as the ionosphere, taking into account com- 

pressibility and sheath effects, as well as the ionospheric magnetic field. 

We would in addition like to do a time domain analysis of such an antenna 

in order  to explicitly demonstrate the relaxation resonance effect. 

Because of the extreme complexity of even the f i rs t  part of this problem, 

we have chosen to investigate instead, the plasma-immersed, infinite, 

cylindrical dipole antenna, and have f o r  the present, neglected the static 

magnetic field. 

The reasons for this approach have been the fact that the infinite 

dipole antenna could be treated exactly, even to including the inhomogeneous 

sheath and magnetic field, and the anticipation that the finite antenna r e -  

sults could at least be qualitatively inferred from the infinite antenna 

results.  

for both the finite dipole and the sheathless infinite antenna, a r e  in 

qualitiative agreement below the plasma frequency, and indicate the 

reasonableness of inferring the finite antenna behavior f rom the infinite 

antenna results,  i f  ca re  is used. 

The resul ts  presented here  for the zero temperature plasma, 

We have found that fo r  the infinite antenna, the admittance is 

relatively unaffected by the plasma compressibility and sheath above 

the plasma frequency. 

conductance and a more capacitive susceptance, while a decrease in the 

vacuum sheath thickness causes a somewhat smaller conductance and 

A decrease in temperature resul ts  in a decreased 
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a less capacitive susceptance. Below the plasma frequency however, 

these effects become important in determining the antenna susceptance, 

where a decrease in the temperature leads to smal le r  conductance and 

less inductive susceptance, while a decrease in sheath thickness leads 

to a smaller conductance and generally more inductive susceptance. In 

particular, an admittance maximum is found below the plasma frequency 

when there is a sheath o r  finite electron temperature, but which is absent 

for  the zero temperature, sheathless situation. This admittance maximum 

appears to be related to the rectification resonance of Takiyama. 

The influence of the plasma temperature and sheath on the location 

of the admittance maximum have not been established here; because of 

the lengthy nature of the calculations, it has not been possible to do an 

extensive parametric study of the admittance. However, we have found 

from the numerical results presented, that for a fixed sheath thickness 

of 5 D K to 0 OK resul ts  in 

practically no shift in the location of the maximum, though the magnitude 

0 decreasing the temperature from 1, 500 R ’  

is reduced by a factor of about 5. Similarly, decreasing the sheath thick- 

ness  from 5 to 0 D at  a fixed temperature of 1, 500 K produces a 

slight downward shift in the location of the conductance maximum from 

0 

R 

about 0 .75  MHz to 0 .6  MHz, although the susceptance maximum remains 

a t  about the same frequency, 0 .8  MHz. This may be a question worth 

pursuing further, since some other theoretical results,  based on a 

very much simpler approach by Harp and Crawford, (1964) indicate that 

the rectification resonance should shift upwards towards the plasma 

frequency with decreasing sheath thickness. It may be that the surface 

62 



waves which can propagate on the infinite antenna, even beiow the piasma 

frequency when there  is a sheath, can significantly a l ter  our resu l t s  in  

this  regard, compared with the finite antenna. 

It has  a lso been found for the infinite antenna that temperature 

and collisional effects a r e  to  an extent, equivalent below the plasma 

frequency, each acting t o  increase the antenna conductance. Above the 

plasma frequency, neither the temperature nor collision frequency exercise 

much influence over the admittance. 

space conductance and susceptance a r e  of nearly equal magnitude, and 

therefore not sensitive to the small imaginary par t  of € 

the collision frequency. 

The la t ter  occurs because the free 

determined by r 

A change in the sign of the susceptance of the infinite antenna is 

observed above, but within 1% of the plasma frequency, as nearly as can 

be found from the calculations. 

influence the location of the susceptance zero, the sheath thickness for  

a real is t ic  electron temperature is so  small compared with the E M  wave- 

length that this is not a determining factor here .  A conductance minimum 

is a lso  found near to, but below the plasma frequency. 

is broader for  the sheathless case and fa r ther  f rom the plasma frequency 

than is the corresponding 5 D 

minimum may be explained on the basis of a cut off in  the propagation 

of the surface and space waves as the plasma frequency is approached. 

While the sheath may be expected to 

This minimum 

thick sheath result .  This conductance R 

W e  have further found that, while the finite antenna in  a cold, 

lossy plasma does exhibit a change in sign of the susceptance in the 

vicinity of the plasma frequency, the conductance has  no minimum such 
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a s  is found for the infinite antenna, unless the collision frequency to 

excitation frequency ratio is on the order  of, o r  lower than, the finite 

antenna free space conductance to susceptance ratio. 

the short  finite antenna has been explained here  by observing that in a 

lossy plasma, the reactive antenna near field interacts with the imaginary 

par t  of the plasma permittivity to produce in-phase currents  la rger  than 

those produced by the much smaller  in-phase field. 

addition, compressible, it appears that the conductance may be made 

larger ,  but we cannot conclude from our  study whether o r  not the conductance 

of the finite antenna would then show a minimum near  the plasma frequency, 

a s  is found for the infinite antenna. This would appear to depend upon the 

antenna length, which even when short  compared with the E M  wavelength, 

may be long compared with the E K  wavelength. 

that the admittance of a spherical dipole in the ionosphere, given by Heikkila 

(1965a), has  no conductance minimum at  the plasma frequency, but does 

exhibit an  admittance maximum below the plasma frequency. 

This behavior of 

If the plasma is in 

It i s  interesting to mention 
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V. Comments and Conclusions 

An analysis of the admittance of an infinite cylindrical antenna 

excited by a circumferential voltage gap, and immersed in a compressible, 

lossy plasma medium has been discussed. The sheath which forms about 

a body at  floating potential in a plasma has been represented by a vacuum 

sheath model, where the actual sheath is  replaced by a free space layer, 

and an inhomogeneous sheath model, where the actual sheath inhomogeneity 

is taken into account. 

range including the electron plasma frequency, and for other parameter  values 

typical of the ionosphere have been given for the vacuum sheath model. 

motivation for  this work has been a desire to investigate the influence of a 

plasma upon the impedance characterist ics of an antenna immersed in it, 

to possibly acquire a better qualitive understanding of the radio frequency 

probe a s  a tool for plasma,and thus ionospheric, diagnostics. 

Numerical results for the admittance over a frequency 

The 

The numerical results which have been obtained a r e  significant in 

a number of respects. 

collision frequencies typical of the lower ionosphere (E and F regions) a r e  

large enough to significantly increase the conductance of a short  (compared 

to the E M  wavelength) antenna immersed in the ionospheric type plasma of 

zero temperature. We have also found from the infinite antenna analysis that 

the finite temperature and collisional effects a r e  interdependent, thus further 

increasing the importance of taking the collisions into account, especially 

of course, below the plasma frequency. 

presence of an admittance maximum f o r  the infinite antenna below the plasma 

frequency, which disappears only when there is no sheath and the electron 

It has been shown that even the relatively low electron 

A further finding of interest  is the 



temperature is zero.  

fo r  the quasi-static approximation, this is the f i r s t  time that we are 

aware of a solution to the full boundary value problem for the compressible 

plasma which shows this property. 

Although such a feature has been found by others 

A comparison of the finite antenna admittance in a zero  tempera- 

ture plasma, using King's theory, with the only infinite antenna resul ts  

where a direct comparison can be made, the zero  temperature, sheath- 

l e s s  case, shows there to be a good qualitative similari ty in their  behavior 

below the plasma frequency. 

it does not guarantee we a r e  on the right t rack in hoping to learn some- 

thing about the finite antenna's behavior f rom results for the infinite 

antenna, it a t  least  does not contradict the possibility of doing this. 

A number of objections, other than that to the infinite antenna 

This similarity is significant in that, while 

analysis u s e d  here, may be raised to the numerical  results we have obtained. 

When we consider that the medium in which we a r e  interested is the iono- 

sphere, the inclusion of a static magnetic field in the analysis is obviously 

desirable. 

the inhomogeneous sheath model, ra ther  than the vacuum sheath model 

employed exclusively here to obtain the numerical results presented, 

would be a l so  desirable. 

been made for both the inhomogeneous sheath model, but without a static 

magnetic field, and the vacuum sheath, zero  temperature case, with a 

z-directed magnetic field. These computations a r e  considerably more  

lengthy, especially the former,  than those required to obtain the results 

given here. 

In addition, the more accurate representation of the sheath by 

Some preliminary numerical computations have 

However, i t  is anticipated that some admittance curves as a 
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function of frequency will be obtained for these situations, and these 

resu l t s  will be reported on subsequently. 

feasible to investigate the warm plasma with the static magnetic field 

and possibly a l so  including the inhomogeneous sheath. A decision on 

whether to extend our analysis to  this situation wi l l  be made after Some 

of the cold plasma, static magnetic field resul ts  have been obtained. 

It appears that it may a l so  be 

We should also mention that the representation of the plasma by 

the fluid equations rather  than using the more  rigorous kinetic approach 

is open to objection, particularly since the possibility of Landau damping 

is not encompassed in the fluid approach. 

the fluid approach predicts zero  conductance below the plasma frequency, 

whereas the kinetic theory shows there to be some lossyness due to 

Landau damping. 

response, which while seemingly reasonable in regions where the change 

in plasma properties occur slowly in comparison with the Debye length, 

may be on l e s s  safe ground in regions of rapid change, such as the sheath. 

A study by Pavkovich (1963) for  the planar geometry contains a comparison 

between fluid and kinetic resul ts  for the impedance of an inhomogeneous 

sheath, which is claimed to show the unrealiability of the fluid approach. 

However, it appears that the author's conclusion about this may be some- 

what prejudiced a pr ior i  in favor of the kinetic theory, as the resul ts  

obtained by the two approaches do not seem that much a t  variance. 

In the absence of collisions, 

The fluid equations represent an averaging of the plasma 

It has been noted that neglect of electron collisions does not appear 

to  be a reasonable assumption for  the warm plasma. 

a cold plasma, the collisions may have a strong influence on the admittance 

Even in the case of 
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of a short antenna. 

culations which a r e  carried out using the fa r  fields, a r e  not particularly 

useful, since they of necessity a r e  for  the lossless  medium. 

objection can be raised to an analysis such a s  that of Kuehl (1966), which 

while using the kinetic approach f o r  finding the radiation resistance of 

a short antenna, (collisions a r e  neglected here also) assumes a specified 

current distribution, and is actually a solution for a current source rather  

than a physical antenna. 

compared with the EK wavelength, (an implicit assumption in the analysis) 

an antenna length on the order  of a few centimeters o r  l e s s  would be r e -  

quired for the ionospheric plasma. This is a clearly impractical length 

for actual experimentation at the frequencies involved, since the reactive 

impedance component would be very much larger  than the res i s t ive  

component of interest. It is interesting however to note that Kuehl (1967), 

presents some numerical results for the model mentioned above, compar- 

ing the resistance of the antenna obtained from both the hydrodynamic and 

kinetic theories, for the collisionless plasma. Hi s  findings show that for 

antennas more than a f e w  DL long, the two theories produce nearly ident- 

ical  resistance values, above the plasma frequency. This indicates that 

the hydrodynamic approach is not an unreasonable one to use, particularly 

i f  electron collisions a r e  also included in the analysis, SO that the hydro- 

dynamic neglect of Landau damping may become l e s s  important. 

Thus it would seem that radiation resistance cal-  

A further 

In addition, in order  for  the antenna to be short 
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Appendix A: Singularities of the C.;rrent I n teg ra l  

The purpose of this discussion is to  show that while the separate 

E 0, 
par t s  of the integrand of Eq. (35) have non-integrable singularities at P=K 

their  sum does not. 

Eq. (36), we find that 

If we examine the free space current  f irst ,  given by 

K E O  

dP I ( z , w )  = -t VoKEo 1 cos (pds (PI 
T o r  0 (Ala) o r  

where J 

argument h E o c  and the prime denotes differentiation with respect to argu- 

ment. is contributed only by the denominator, 

and Y a r e  the Bessel and Neumann functions of order  ze ro  and 
C C 

Now the singular par t  of I o r  
Using the small  argument forms for 

E O '  
so we examine i t s  behavior a s  6-K 

J and Y, we obtain 
1 1 1 

If we le t  

then 

and the singular par t  of the integrand of (Ala) is given by 
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which is integrable a t  A'= o since 

However, when we consider the singular par t  of the integrand 

we have 
oi, of I 

I 1 I 

Jc Jc + y c  yc s= yC 

XE0(Jc2 + Yc2) 'Eo yc 

Using the same scheme a s  for I we find, using (A4), that the singular par t  

of the Ioi integrand becomes 
or,  

1 

d A  

which is not integrable a t  A' = 0 since 

In ( In x ) - /,4", x - 

The plasma contribution to (35)  can be investigated in a s imilar  

fashion. 

argument limits, which a r e  

We require for this purpose, the Wronshian expression for the small 

70 



W(C, s )  

Eo, We may show that near  p = K 

R 
A m 

E 

Thus the real  and imaginary parts of &, denoted by AIr and AI. 

in the vicinity of p = K 

become, 
1, 

Eo 
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where J and Y are ze ro  order  Bessel  and Newmann function of argument 

AEos. We see  upon comparing (A7) and (A81 with (Al)  to (A4) that the AI 

and Io integrals, in the vicinity of P=K 

thereby cancelling the non- integrable singualrities. 

S S 

a r e  equal but of opposite sign, Eo, 
Note that while singular 

par t s  of (35) thus cancel, the integrand does not become zero.  
- 
An 

the dominant t e rms  in LEO does contribute to the integral a t  P=KEo 

That par t  of 

which has been neglected in obtaining (A6) as being small  compared with 

J 

The same resul t  can be established directly from Eq. (39), which 

is an alternate form for Eq. (35). It may be seen that near  P=K A/D, 

which appears in (39), behaves a s  
E 0, 

Thus, the integrand of (39) is independent of A and therefore integrable E 0, 
at P'KEo, 

We have so far  implicitly assumed a non-zero collision frequency, 

so that the only singularities of concern a r e  those caused b y h E o  If however, 

the collision frequency is zero,  then while no singularities a r i s e  because of 

kE or A, becoming zero,as long as s#c, singularities are instead caused by 

cancellation of additive t e r m s  in D, which while complex for non-zero collision 

frequencies, become pure r ea l  or pure imaginary for ze ro  collision frequency, 

and thus can have r ea l  values of P a s  roots to D(P) = 0. Seshadri (1965b) has 

discussed this question in some detail, so we wi l l  not pursue it here .  

The free space situation is recovered, so far a s  the type of singularity is 

concerned, only i f  the collision frequency, sheath thickness and electron 

temperature all become zero.  
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Our problem is to obtain a final answer from our integration that 

is accurate to the desired number of places. If the t rue answer is F, then 

we have from ( 6 2 )  

where 

F= ) fi*E=FNfE 

i= 1 

,m+k 

f . =  1 ‘)- ’ d .  Jm f(ai+jh)rtEi 
L 

j = o  

and E is the accumulated convergence e r r o r  arising from the fact that the 
, 

contribution of each interval, f 

e r r o r  E. associated with each interval. 
1 13 

f(ai+jh) a r e  known a s  accurately as desired, s o  that the final accuracy is 

determined by E. alone. 

the individual allowable Ei in order to keep E within the desired limits. 

is not exactly known due to the convergence i’ 

We assume that the individual f . .=  

The problem now is to find a means for  specifying 
1 

There a r e  three rather obvious methods that might be used to deter-  

mine the allowable E.  for  each interval. 

the convergence e r r o r  E. less  than a certain fraction of the sum for F to 

the present interval. 

the ratio of the largest  previous f .  obtained to the present f .  in order  to 

keep the f i r s t  uncertain figure for each f .  , contribution in the same location 

relative to  the decimal point. 

(1) One method would be to keep 
1 

rJ 

1 

( 2 )  A second method would be to determine Ei f rom 

1 1 

1 

(3) A third method could be to simply hold 
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E. constant throughout. 

but l e s s  efficient in t e r m s  of abscissa  points required in comparison with 

This la t ter  method would be simplest to employ, 
1 

the second. These three methods a r e  examined in turn  below. 

(1) If we s ta r t  out with an allowable normalized convergence e r r o r  

per  interval of EC, we then have 

then 

[EI<EClfd +EClfl+f21 + . . .+EC IF1 (€33) 

< E ~ [ N  lfd + ( ~ - i )  lfj + . . . Q] 
If the fi  a r e  of nearly equal magnitudes (as was actually the case with the 

variable interval width integration technique) then 

Now if all the f i  were of the same sign, then 
N 

F-N f l  
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s o  that 

If on the other hand, the f i  alternated in sign, so that 

then 

We see that in either case, the normalized e r r o r  E =p/Flis large. 

not unusual to have N=60,  and with E = 2 ~ l O - ~  a s  was used, then 

It was n 

C 

6 ~ 1 0 - ~  < E  < 0. 36 n 

( 2 )  We have now 

so 

where f is the largest  value of fi. We note that fm is not a prioriknown 
m 

in the actual calculation, since only information on f. already obtained is 

available, s o  that f m  may increase during the course of the summing process.  

This means that the actual e r r o r s  may be l e s s  tharithat indicated by (B5), 

1 
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N 

F = N  f l =  

so 

E E  
lT-l=l+c 

I#-+ EC 

On the other hand, for  alternating fi, then 

lF1=ifll = ifml 
so 

Again, for N=60, and EC=2x10-4, then 

2 x 1 ~ - 4  < E n < 0 . 1 2  

IEll<EC l f l l  
lE2l GEC If21 

(3)  In this case 

unless f m  of course happens to be f l .  

Now, if all the fi  were nearly equal and of the same sign, 

then 

.. 

We see that the e r r o r  here  is approximately the same as (B5) for nearly 

equal fi. If however, the f i  vary considerably in  magnitude, then this 
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since over most of the range of integration where the major contribution 

to F arose ,  the f .  were nearly the same in magnitude, and the two methods 

are equivalent. 

1 

In the final stages of the integration, the f i  were rapidly 
N 

decreasing however, in relation to  F, and there  is no advantage to finding 

each f .  to say, 4 significant figures, when the only significant figures in 

the current F which wi l l  be changed by this fi, are the last one o r  two places. 

Method 2 essentially consists of adding a column of figures given by fi, with 

a common decimal point, and having the las t  significant figure of each f i  

fall in the same column. 

1 
N 

Since the conductance is obtained from a much smaller  integration 

range than the susceptance, and in addition does not change in sign over that 

interval, as does the susceptance, i t  is generally obtained with a higher 

accuracy. There is also a truncation e r r o r  associated with the susceptance, 

which has  been previously discussed, (and which has  not been considered 

here  in finding E, assumed due alone to the convergence e r r o r s  of each 

interval) due to terminating the integration at  a finite value of @ , further 

increasing the susceptance e r r o r  in comparison with the conductance. 

We should also mention that the convergence tes t  used here, dis-  

cussed in  section I11 on the numerical analysis, is a conservative one. It 

w a s  consistently found that the f i  were accurate to  one more  significant 

figure than w a s  indicated by the convergence test. This  means that while 

the actual value used for EC in the calculations w a s  2 ~ l O - ~ ,  the effective 

E w a s  about an  order  of magnitude l e s s ,  as w a s  a lso the resulting accumu- 

lated, normalized convergence e r r o r  En. We can thus state that we should 

C 

77 



have E value arising f r o m  

most unfavorable situation. 

Finally, it is worth 

n our calculations no l a r g e r  than in the 

while to point out that the e r r o r  testing technique 

and variable width integration interval technique which were used for  these 

calculations was useful in finding programming e r r o r s  reflected in  the f . .  

Any e r r o r  in the f .  as a function of the integration variable resulted in very 

smal l  integration intervals in the immediate vicinity of the e r r o r .  

specifying EC to be l e s s  than the accuracy with which the fi  were obtained 

resulted also in very smal l  integration intervals,  which oscillated in  size. 

The integration technique developed for these calculations should be very 

useful and accurate for  handling any number of integration problems which 

involve integrand functions which a r e  t ime consuming to  evaluate. 

1 

1 

Similarly, 
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